
17th Telecommunications forum TELFOR 2009 Serbia, Belgrade, November 24-26, 2009.

Abstract — This paper addresses the problem of barcode

detection and decoding on devices with limited resources. We
propose a fast and robust method specifically designed for 2D
Data Matrix type barcode scanning. Our approach uses a
contour tracing technique for the identification of key
corners and segments, followed by one or two fitting steps.
The method is well suited for implementation on mobile
hand-held devices or on other systems where a real-time
solution is required.

Keywords — 2D barcodes, barcode detection , Data
Matrix, image processing, mobile devices.

I. INTRODUCTION

OWADAYS, when almost everyone is connected via
hand-held mobile devices in a “technological

synesthesia” and important informational paradigms
merge, the general use of decoding barcodes becomes
widely available. Barcode technology is accessible to
anyone who possesses a simple camera featured device.
Although specific industrial barcode reading hardware has
already been developed and used for many years, cheap
camera-enabled gadgets allow small businesses to take
advantage of visually encoded data at almost no cost with
minimal hardware investments.
 Modern barcode representation migrates towards 2-
dimensional data scattering. Different encoding
symbologies have been designed, such as: QRcode, Data
Matrix (semacode), colorcodes (High Capacity Color
Barcode), maxicode, shotcode, etc. some of them heavily
used in diverse applications. Despite the ever increasing
rate of hardware capabilities, there is still a need to keep
processing power and resource consumption under strict
control. In the following sections we will strictly cover the
detection and decoding of barcodes considering specific
Data Matrix [1] format attributes.

II. 2D BARCODES DECODING

 Data Matrix “Fig. 1.a” is one of the most widely spread
2D symbologies alongside the QR Code. Elements that
best describe the main characteristics of a Data Matrix
symbol are closely related to its finder pattern “Fig. 1.b”.
An L-shaped boundary formed by two adjacent sides helps
in finding the location of possible symbols. It also
provides the orientation and code size estimations on the
source image. On the complementary sides, two

Pârvu Ovidiu is with the “Politehnica” University of Timisoara,

Romania, Faculty of Automatic Control and Computer Science (e-mail:
parvu@cs.upt.ro).

Andrei G. Bălan is with the “Politehnica” University of Timisoara,
Romania (e-mail: andrei@ufodesign.ro).

alternating synchronization patterns lie. Encoded bits are
distributed across a regularly spaced cell grid with its size
given by the synchronization pattern. Further defining the
symbol, the outer elements are accompanied by a “quiet
zone”, where no other graphic elements should be found.
White on black barcodes are common with colored [2]
variations also possible due to the decoding algorithm's
focus on high contrast zones and grayscale conversions.

 Different approaches [3]-[5] were proposed in order to
detect and decode barcodes with common hardware. Some
solutions are general as they are for the most part
applicable to a wide range of symbologies. Others focus
on a specific barcode type. These methods are somewhat
“faster” than their “general” counterparts as they tend to
exploit characteristics of the symbology they try to
decode.
 Many methods rely on edge detection passes. These, in
turn, point to different corner isolation techniques. Linear
features used in object candidates retrieval are more than
often highlighted through Hough space transformations. It
is not an ideal practice for all mobile gismos since the
method is memory hungry and pretty expensive
computationally wise. Other solutions revolve around the
identification of common gradient feature regions and
growing / linking algorithms. Several texture analysis and
segmentation techniques can also be used to detect
candidate regions.

III. A FAST BARCODE DETECTION METHOD

 The guiding ideas implied by the development of our
fast, computationally inexpensive solution were: reduction
of large array memory accesses (process as few individual
pixels as possible), the restriction to integer operations due
to hardware limitations and possible speed optimizations.
Our method follows classical image processing steps with
a binarization / object candidates segmentation approach
since we don't stray a lot from a basic scan-line, row by
row, image analysis algorithm.

Independent components are identified with a contour
tracing algorithm. Without disregarding noise and other

A method for fast detection and decoding of
specific 2d barcodes

Ovidiu Pârvu, Andrei G. Bălan

N

Fig. 1. (a) Data Matrix Code (b) Finder patern

1137

errors, the longest two segments (linear or curved) are
determined by contour corner analysis. If they pass certain
criteria, the two segments could form the support for the
L-shape marker. The code's corners are determined
through two consecutive fitting and re-fitting steps starting
from the maximal allowed fourth corner deviation relative
to the already found segments. Next, we will introduce the
general detection process followed by a somehow detailed
discussion of its key algorithms:

1. Pre-process source image (thresholding step).
2. If any remaining unprocessed regions exist then

continue to step 3, otherwise go to last step.
3. Select region and trace region contour.
4. If contour acceptance test failed go to step 2,

otherwise continue to step 5.
5. Select best two candidate segments corresponding

to the current region.
6. If the two segments can't form a marker (L shape

part of a barcode) go to step 2, otherwise
continue to step 7.

7. Approximate the fourth corner (worst case).
8. Arc-circle fitting method.
9. If fitting failed then go to step 2, otherwise

continue to step 10.
10. Optionally refit region / the four quadrilateral

segments.
11. Find synchronization pattern. Approximate

synchronization midpoints coordinates.
12. If synchronization pattern doesn't exist go to step

2, otherwise continue to step 13.
13. Extract binary pattern information based on

midpoint positions under perspective.
14. Decode barcode region information and add to

result queue. Go to step 2 (searching for another
barcode).

15. Process result queue. End.

A. Image pre-processing preserving relevant markers

 This step prepares the original image “Fig. 2.a”, making
it suitable for further processing. In order to eliminate
unwanted background and accentuate important code
features, a process of image segmentation is implemented
in a binarization / thresholding step. This is achieved by
applying different methods: histogram based (Otsu) [6]
“Fig. 2.b”, adaptive, knowledge based, etc.

In our context of fiducial highlighting, adaptive
thresholding produces very good results, being almost
impervious to different degrees of illumination. A simple
and efficient algorithm was proposed by Wellner [7], with
the purpose of obtaining local threshold values by the
mean of the last K linear pixels “Fig. 2.c”.

Our approach “Fig. 2.d” uses only a slightly modified
box-blur adaptive threshold. We pass thru the image with
a box window of K pixels around the current one (2*K+1
by 2*K+1), calculate its mean value and compare it to the
pixel’s intensity. If we scan the rows horizontally, the only
difference from the last box window are two vertical
columns of 2*K+1 size at the left and the right of the new
window. Then, if we retain the value of the first column,
we only have to read one more column. Now, looking
from a vertical perspective, the same observation applies

for a pixel segment of 2*K+1. Thus for each pixel we only
need to read its corresponding value and pre-calculate
only one column value (two pixel reads, one column read,
one column write) independent of the window size. The
selected box window size is crucial to the detection step,
even though the size doesn’t affect computation time, due
to the algorithm used.

Although this method produces a lot more “noise” than
the ones mentioned before, the object of interest is not
affected as it can be very well distinguished from the
background. The algorithm we used is very robust but it is
still rarely susceptible of far then ideal results under
certain illumination circumstances.

kykx

kyjkxi

jiP
k

yxG
,

,
2

,
12

1
, (1)

As an improvement to this step, we could combine it
with a global thresholding method, creating a hybrid
solution. In our algorithm the global variance will be
implemented as a theta (1) coefficient multiplied with the
adaptive threshold, where G is the computed thresvalue
for the [x,y] pixel under global variance for a window of
size 2*k+1. By employing a hybrid solution, we have to
consider whether the computation time in the code
detection procedure is reduced or if it just introduces the
inherent thresholding overhead.

B. Shape extraction based on contour tracing
segmentation

 Limited resource use was the criteria we based our
detection solution on. Shape extraction and component
isolation had to be done in a fast, reliable way [8]-[11].
We started from the algorithm suggested by F. Chang and
C.J. Chen [12] as it was designed for fast row by row
scanning with the associated contour deviations. The
algorithm deals with the connected component labeling
problem but it also generates contour information.

The algorithm scans each binary image row for
unlabeled critical pixels. If a boundary unprocessed pixel
is found the method diverges from the scan-line,
sequential approach by tracing and marking the whole
new-found contour. Processing time is directly dependent
on the number of traced contours and indirectly on the

Fig. 2. (a) Original grayscale image (b) Histogram

thresholding (c) Scan-line adaptive (d) Local adaptive

1138

implemented binarization strategy. Since we're not
interested in component labeling we opt to mark only the
contour and its adjacent pixels. Inward component pixels
are not of our concern. In doing so, we save image
memory writes as there is no need to label these pixels.
Our basic detection method doesn't actively use interior
contours hence gaining important speed-ups.

The boundary is determined on a consecutive pixel
tracing basis. Once the first contour pixel is found, the
next one is detected by analyzing the current pixel's
neighbors in a clockwise manner and so on... The
neighboring pixels are numbered similarly to a Freeman
chain-code element [13]. Tracing direction is established
starting from the last pixel's corresponding number. Shape
outline “Fig. 3.a” is extracted in a continuous way, so that
the data is already suitable for further processing.

 When a contour is closed, some simple contour
evaluation tests are taken with regard to its maximum
allowed length, bounding box size / ratio limits and
bounding box position. We found out that such a trivial
approach is highly efficient to the removal of most of the
unwanted noise and image objects.

C. Detection of corner neighborhood points

 Once a specific object boundary is found, its contour
pixels are covered in a continuous way. Notice that the
main characteristics of an “L-shaped contour” are defined
by its longest two line segments. Different contour corner
techniques were suggested [14]-[16] but we stopped on
the method proposed by D. M. Tsai et al.[17] which is
based on the eigenvalues of the covariance matrix of data
points. For each pixel in a sequence of boundary points
two proper eigenvalues associated to the minor and major
axis of an ellipse could be calculated. A symmetric region
of support is analyzed for every contour point. Those
values are then compared to an estimated threshold. A
pixel could be considered as a contour corner by verifying
the eigenvalue criteria. Corner neighborhood “Fig. 3.b”
pixels are also selected when proper threshold values are
applied.

The method is very fast as it and can be easily
integrated into the contour tracing algorithm. New
unprocessed contour pixel coordinates are added to the
region of support in a sliding window manner so that we
actually calculate the eigenvalues for an already traced
contour pixel. Sliding window size has no influence
whatsoever on the performance of the corner detection
method.
 The two L-marker segments are identified by selecting
the longest two continuous contour sections without

corner or near-corner points. For the detection of severely
damaged codes a simple segment merging routine is
implemented. Another object rejection phase is carried on
right away. Corner-based rejection tests could be carried
out while “walking” the boundary, which consequently
leads to the exclusion of further corner detection.

D. Fourth corner approximation and fitting

 In the last carried step, preliminary L-shape coordinates
were found. The strongest L-shape corner location can be
closely approximated starting from the intersection of the
two recently extracted segments. Next, the remaining three
points are classified and labeled with A1,B1,C1 “Fig. 4.” in
order to obtain the code's orientation. A1 and C1 are
located “inside” the AB1 and CB1 segments, where A and
C are accurate barcode extremities. The corner detection
method ensures us that A1 and C1 are extremely close to A
and C points. We define A2 and C2 as two pixel locations
which are certainly found on the opposite barcode
segments but also on the L-shape boundary. As A2 and C2
could be determined in a simple way starting from A1 and
C1, they remain in the close neighborhood of A and C
points. Note that A and C are not yet determined.

The most difficult problem that remains to be solved is
finding the coordinates of the fourth corner (D). Our first
naive attempt was to apply an inverse perspective
transformation under weak-perspective assumptions. The
position of the fourth corner is one of the solutions to a
specific quartic equation. Finding these solutions
analytically is not quite trivial. This endeavour proved to
be less than appealing as the exact coordinates of A and C
weren't precisely determined. We finally opted for a
barcode quadrilateral fitting step and introduced the D1
point as a bad approximation to the fourth corner. As a
mandatory requirement, D1 has to be located inside the
barcode area. We estimated the location of D1 based upon
the median of the A1C1 segment and the bisector of the
A1B1C1 angle. The A2D1 and C2D1 segments are the
sources of two imaginary circles with the centers in A2 and
C2. For each pixel found on circumference its
corresponding previous or next circle neighbors could be
rapidly computed with a fast “midpoint arc-circle”
drawing routine. Starting from D1, the arc-circle drawing
algorithm moves towards the exterior of the barcode
region. As long as black pixels are found on the “outside”
of the two oriented segments the next arc-circle pixel is
considered and so on. Searching stops when the arc-circle
reaches the quiet zone. A small tolerance value has to be
introduced in order to ignore possible noise, small
distortion and image binarization errors. The method

Fig. 4. Arc-circle fitting

Fig. 3. (a) Contour tracing (b) Corner neighborhood

1139

facilitates fast convergence towards the outside boundary
so that correct estimation of D1's position doesn't play a
crucial role in it. Once this process is completed, two new
boundary points are found. The intersection of the two
new found segments gives us a decent approximation of
the D point. A and C are calculated by intersecting
segments A2D with A1B1 and C2D with C1B1, respectively.
 The last calculated point positions might be used with
satisfactory results in the Data Matrix cell sampling steps.
Since there is still room for improvements, we use a
second, optional, segment fast re-fitting step. The
vicinities of the already known segments are sampled by
“climbing” (relative to the analyzed segment) when black
pixels are encountered and “descending” when white
pixels are found. Black pixel peaks are used to generate
new line equations with a linear regression approach.

 Sampling this grid only by perspective projection means
gives moderate results “Fig. 5.a”. Our tested
implementation takes into account the fact that
information about synchronization pattern midpoints is
calculated in a previous pass “Fig. 5.b”. Midpoint
information, although incorrect perspective-wise,
alongside correctly transformed coordinates makes for a
better solution.

IV. VARIATIONS AND IMPROVEMENTS OF THE PROPOSED

METHOD (FUTURE WORK)

As a speed optimization, our algorithm processes only
the exterior object boundary for barcode information. This
does not favor the inverse contrast codes. To face this
drawback, the same method may be used by taking into
account the inner contour. In the case of extremely
damaged barcodes (highly disconnected) another step for
component merging can be applied after contour tracing.
The use of curve/arc equations instead of lines would also
be a significant upgrade to the decoding algorithm, easily
correcting the errors induced by camera lens distortions.

Taking into account the chosen application environment
(mobile devices) we implemented our algorithm by using
only integer operations. Decoding precision is improved
by using floating point operations. Generally, this
accounts for intersection calculus, which is mainly
reflected in sampling point coordinates. However this
usually claims a great deal of resources, especially on
devices with limited specifications. Following the pre-
processing steps we only need two bits to store the
information for each pixel. In the 2 bit per pixel approach,
memory use is greatly reduced (but this could also induce
unnecessary computations).

In case of a real-time oriented implementation, another
algorithm could be merged into our proposed method by
tracking the barcode region in a continuous image stream.
Tracking would improve the detection and decoding part
of our method, since it would process a higher number of
input images for better region sampling. However, this is
not mandatory considering that our method could already
be implemented on a real-time system.

V. CONCLUSION

In this paper, we proposed a fast and robust solution for
the detection and decoding of 2D barcodes, specially
suited for operation on devices with limited resources. The
featured method was tested and provided a satisfactory
output, containing a high decoding accuracy mixed with a
fast response time. Based upon the optimizations
discussed earlier, we will further develop this method
increasing its precision and making it more “time-critical”.

REFERENCES

[1] “Data Matrix bar code symbology specification” ISO/IEC
16022:2006, 2006

[2] D. Parikh, G. Jancke, “Localization and segmentation of a 2D high
capacity color barcode”, Proceedings of the 2008 IEEE Workshop
on Applications of Computer Vision, 2008, pp. 1-6

[3] E. Ohbuchi, H. Hanaizumi, L. Ah Hock, “Barcode Readers using
the Camera Device in Mobile Phones”, Proceedings of the 2004
International Conference on Cyberworlds (CW’04)

[4] H. Wang, Y. Zou, “Camera readable 2D bar codes design and
decoding for mobile phones” , ICIP 2006, pp. 469-472

[5] E.Ottaviani, A.Pava, M.Bottazi, E.Brunclli, F.Casclli, M.Guerreo,
“A common image processing framework for 2D barcode reading”,
7th International Conference on Image Processing and its
Applications, pp. .652–655

[6] N. Otsu, “A threshold selection method from gray-level
histograms”,IEEE Transactions on Systems, Man, and
Cybernetics,pp. 62-66, 1993

[7] P. D. Wellner, “Adaptive Thresholding for the DigitalDesk”, Xerox
Technical Report vol. EPC-1993-110, 1993

[8] I. Debled-Rennesson, S. Tabbone, L. Wendling, “Multiorder
polygonal approximation of digital curves”, Electronic Letters on
Computer Vision and Image Analysis, 2005,pp. 98-110

[9] A. Mikheev, L. Vincent, V. Faber, “High-quality polygonal contour
approximation based on relaxation”, Proc. International
Conference on Document Analysis and Recognition, 2001

[10] D.G. Bailey, C.T. Johnston, “Single pass connected components
analysis” , Proceedings of Image and Vision Computing New
Zealand, 2007, pp. 282–287

[11] S. Kiranyaz, H. Liu, M. Ferreira, M. Gabbouj, “An efficient
approach for boundary based corner detection by maximizing
bending ratio and curvature”, Signal Processing and Its
Applications, ISSPA 2007, pp. 1-4

[12] F. Chang, C. J. Chen, “A Component-Labeling Algorithm Using
Contour Tracing Technique”, Proceedings of the Seventh
International Conference on Document Analysis and Recognition
(ICDAR 2003)

[13] F.C.A. Groen, P.W. Verbeek, “Freeman-Code Probabilities of
Object Boundry Quantized Contours”, Computer Graphics and
Image Processing 7, pp. 391-402 (1978)

[14] E. Rosten, T. Drummond, “Machine learning for high-speed corner
detection”, Computer Vision – ECCV, 2006, pp. 430-443

[15] Z. Hao, S. Lejun, “A fast corner detection algorithm based on area
deviation”, Proceedings of IAPR Workshop on machine vision
applications, 1994

[16] F. Arrebola, F. Sandoval, “Corner detection and curve
segmentation by multiresolution chain-code linking”, Pattern
Recognition, No. 10, 2005, pp. 1596-1614

[17] D. M. Tsai, H. T. Hou, H. J. Su, “Boundary-based corner detection
using eigenvalues of covariance matrices”, Pattern. Recogn. 20,
1998,pp. 31-40

Fig. 5. (a) Bad case of perspective sampling cell centers
(b) Synchronization midpoint with perspective sampling

1140

